
CONTENTS 1

The Overture Hyperbolic Grid Generator
User Guide, Version 1.0

William D. Henshaw 1

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551
henshaw@llnl.gov
http://www.llnl.gov/casc/people/henshaw
http://www.llnl.gov/casc/Overture

November 2, 2003

UCRL-MA-134240

Abstract

This document describes the HyperbolicMapping class for generating surface and volume grids using
a marching algorithm. Surface grids can be grown over any other Mapping that defines a surface in three-
dimensions including a CompositeSurface which represents a surface as a collection of multiple sub-
surfaces. Volume grids can be generated in two or three space dimensions. A variety of boundary conditions
are available.

Contents

1 HyperbolicMapping 4
1.1 Hyperbolic Marching Equations . 4
1.2 Algorithm . 7

2 Steger-Chan Hyperbolic Marching 11

3 The Osher-Sethian Level Set (Hamilton-Jacobi) Marching Equations 13

4 Distributing points by equidistribution of a weight function 14

5 Boundary conditions 14
5.1 Boundaries, Ghost Points and the BoundaryOffset . 15
5.2 Normal Blending . 16
5.3 Projection of boundary points on surfaces . 16
5.4 Heuristic Comments on Hyperbolic Parameters . 16
5.5 Hints to making a grid . 16

6 Creating a surface grid on another Mapping or CompositeSurface 16

1This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research

CONTENTS 2

7 Examples 17
7.1 Bump . 19
7.2 Flat Plate . 20
7.3 Mast for a sail . 21
7.4 Airfoil grids . 22
7.5 Surface grid generation on a CompositeSurface for a soup can . 23
7.6 Surface and Volume Grid Generation on a CAD model for an Automobile. 24
7.7 Grid Generation for a Truck. 26

7.7.1 Front . 26
7.7.2 Wheel . 28
7.7.3 Cab tender . 29

8 Class member functions 30
8.1 Constructor . 30
8.2 Constructor . 30
8.3 Constructor . 30
8.4 isDefined . 30
8.5 printStatistics . 30
8.6 setBoundaryConditionMapping . 30
8.7 setSurface . 31
8.8 setIsSurfaceGrid . 31
8.9 setStartingCurve . 31
8.10 saveReferenceSurfaceWhenPut . 31
8.11 setup . 31
8.12 setParameters . 32
8.13 setPlotOption . 32
8.14 smooth . 33
8.15 inspectInitialSurface . 33
8.16 generate . 33

CONTENTS 3

Figure 1: Snapshot of the hyperbolic grid generator. A surface grid is grown on a CAD model for an automobile. A
starting curve is chosen and the grid is grown in both directions over the surface.

1 HYPERBOLICMAPPING 4

1 HyperbolicMapping

The HyperbolicMapping can be used to generate surface and volume grids by marching along or from a given
reference curve or surface.

This Mapping is still under development and subject to possibly severe changes.
See the Mapping monster manual[3] for a information on many other Mappings as well as a description of

Mappings in general.

1.1 Hyperbolic Marching Equations

Let (r, s, t) denote the parameter space (computational) coordinates. Instead of taking parameter space to be the unit
cube we instead take the grid spacing in parameter space to be 1, ∆r = ∆s = ∆t = 1.

Given a surface x0(r, s) = x(r, s, t = 0) we wish to generate a volume grid, x(r, s, t), so that the grid lines in
the t-direction are nearly orthogonal to the grid lines in the two other directions. We call x(r, s, t = 0) the initial
front and think of the variable t as a time like variable. If we have generated the grid to “time” t = t0 we call
x(r, s, t0) the current front.

The basic marching equations to determine x(r, s, t) given x(r, s, 0) are defined by the hyperbolic PDE

xt = S(r, s, t) n(r, s, t)

x(r, s, 0) = x0(r, s) initial conditions

B(x(r, s, t)) = 0 boundary conditions

where

n(r, s, t) =
xr × xs

‖xr × xs‖
normal to the front

S(r, s, t) scalar speed function

and the norm ‖ · ‖ is defined by
‖f‖2 ≡ f · f .

These equations march the grid in the direction locally orthogonal to the current front. The speed function S(r, s, t)
determines how fast the front propagates; it can depend on local properties of the front. Smoothing is also added to
the equations so we actually solve a parabolic equation of the form

xt = S(r, s, t)n + ε(r, s, t)(xrr + xss)

To ensure that the front always propgates in the forward direction we require n · xt > 0 or equivalently

n ·
(
S(r, s, t)n + ε(xrr + xss)

)
> 0

In addition to smoothing the grid in the (r, s) directions, the the parabolic smoothing term will tend to slow the front
where the curvature is negative (i.e. n · (xrr + xss) < 0) and speed up the front where the curvature is positive.
Note that choosing too large a value for ε could cause the front to propogate in the wrong direction resulting in
negative cell-volumes. The speed function S(r, s, t) and dissipation coefficient ε should be specified so that we get a
“nice grid”. A nice grid should not have any grid lines that cross, it should be reasonably orthogonal and reasonably
smooth.

The marching equations can be solved with an implicit time marching algorithm. To do this we first linearize
the equations about the current front, x(r, s, tn), to obtain an equation of the form

xt = A(r, s, t)xr + B(r, s, t)xs + ε(xrr + xss) + f(r, s, t)

1 HYPERBOLICMAPPING 5

This equation can be solved using a θ−scheme for x(r, s, tn) ≈ xn,

xn+1 − xn

∆t
= θ

[
A(r, s, tn+1)xn+1

r + B(r, s, tn+1)xn+1
s + ε(xn+1

rr + xn+1
ss)

]

+ (1− θ) [A(r, s, tn)xn
r + B(r, s, tn)xn

s + ε(xn
rr + xn

ss)] + fn

fn = Snn??

where θ = 1 corresponds to backward-Euler. For efficiency we use an approximate factorization to reduce the
implicit matrix solve to a sequence of block-tridiagonal solves.

We now consider choices for the speed function, S(r, s, t). Following the approach of Steger-Chan we define
the speed function based on the local cell-areas of the front,

SA(r, s, t) = d0(t) ∆t ∆a/∆a

d0(t)∆t = distance to march in a time step ∆t, (approximate average value)

∆a(r, s) = ‖xr × xs‖ proportional to the local area of the front

∆a(r, s) = Locally averaged value of ∆a(r, s)

The speed function is proportional to the local cell area divided by a locally average cell area. The averaged cell
area, ∆a(r, s), is computed by smoothing the cell area ∆a(r, s) using a simple Jacobi type interation. As a result of
using this speed function the grid will tend to grow faster where the area of cells on the front are smaller and slower
where the grid cells are larger compared to the local average. Asymptotically a front will tend toward a curve where
the surface areas are equal. For example, a front may tend to a sphere or a plane in 3D, depending on the boundary
conditions for the front. Steger and Chan also use a sophisticated dissipation term as described in section 2.

Following the approach of Sethian we could also choose the speed function proportional the the local curvature,

Sc(r, s, t) = (1− εcκ(r, s, t))

κ(r, s, t) = local curvature

If εc > 0 then we are guaranteed that grid lines will not locally cross, although the front could propogate in the
wrong direction id Sc becomes negative. Here the curvature κ causes the grid to move faster where the curvature is
negative and slower where it is positive. The hyperbolic grid generator allows one to use a combination of the area
based speed function and the curvature based spped function. The comnbined speed function is taken as the product
of SA and Sc,

S(r, s, t) = d0(t) ∆t ∆a/∆a (1− εcκ(r, s, t))

For 2D volume grids or 3D surface grids there is also an option to blend the solution obtained from the above
equation with a distribution of points based on equidistributing a weight function based on the arclength and cur-
vature. If we equidistrubte the arclength, for example, we will obtain a distribution of points, xE , that are equally
spaced in arclength. A new front is defined by averaging the equidistributed points with the points determined by
using the speed function.

x̃(r, s, t) = (1− ωE)x(r, s, t) + ωExE(x(r, s, t))

The equidistributed points are determined by a weight function

w(r) = αA‖xr‖/‖xr‖∞ + αC‖xrr‖/‖xrr‖∞

where ‖f‖∞ = maxr ‖f(r)‖. The weight function is equidsitributed over the unit interval to determine positions
rE
i ∈ [0, 1], i = 1, 2, . . . , N , rE

i+1 > rE
i , such that

∫ rE

i+1

rE

i

wdr =
1

N

∫
1

0

wdr

1 HYPERBOLICMAPPING 6

This last equation expresses the condition that the weight function is equidistributed. The new grid points positions
are computed by evaluating the curve, c(r), defining the current front at the new parameter positions rE

i ,

xE := c(rE) : re-evaluate the curve at the new positions

Following Steger, the hyperbolic marching equations can be cast in an alternative form

xr · xt = 0 (1)

xs · xt = 0 (2)

xr × xs · xt = ∆V (r, s, t) (3)

The first two equations specify the orthogonality conditions while the last equation specifies the local volume of the
cell, ∆V . We can solve these equations for xt and we see that the solution is defined by locally marching along rays
that move in the normal direction:

xt(r, s, t) =
xr(r, s, t)× xs(r, s, t)

‖xr(r, s, t)× xs(r, s, t)‖2
∆V

=
∆V

‖xr(r, s, t)× xs(r, s, t)‖
n(r, s, t)

n(r, s, t) =
xr(r, s, t)× xs(r, s, t)

‖xr(r, s, t)× xs(r, s, t)‖

and thus we can identify the speed function

S(r, s, t) =
∆V

‖xr(r, s, t)× xs(r, s, t)‖

If we choose ∆V (r, s, t) = c‖xr(r, s, t)× xs(r, s, t)‖, for a constant c, then the grid lines in the marching direction
will just be straight lines parallel to the normal of the original surface. Of course the grid generated by this system
may develop singularities, if any part of the original surface is concave. To avoid this problem extra smoothing is
added.

If we choose ∆V (r, s, t) = c then the grid spacing in the normal direction will be inversely proportional to the
local surface cell area. Thus the grid will grow fastest where the cells are small.

The basic marching distance depends on the type of stretching, the total distance to march D, and the number of
steps to march, N :

dn
i =

D

N
constant spacing

dn
i = D αn α− 1

αN+1 − 1
geometric stretching

The volume element appearing in the marching step is a product of the marching distance times the ratio of the
averaged area element ∆ai to the area element ∆ai

∆Vi = dn
i

∆ai

∆ai

: volume element

Parameters appearing in the code are

number of volume smooths : number of times we smooth ∆ai to obtain ∆ai.

uniform dissipation coefficient : ε, coefficient of the parabolic terms.

implicit coefficient : θ coefficient of implicit time stepping.

equidistribution : weight factor for the equidistributed approach.

arclength weight : αA weight for arclength in equidistribution weight function

curvature weight : αC weight for curvature in equidistribution weight function

curvature speed : εc weight factor for the curvature dependent speed function.

1 HYPERBOLICMAPPING 7

1.2 Algorithm

Here is a summary of the algorithm
Notation:

nd : domain dimension, nd ≡ 2 for 2D volume grids or 3D surface grids, nd ≡ 3 for 3D volume grids
C : starting surface (or starting curve)
R : reference surface for surface grid generation
∆ai : local surface area (arclength in 2D)
∆ai : smoothed surface area (smoothed arclength in 2D)
ni : normal
D : marching distance
N : number of steps to march
i : multi-index i = (i1, i2) for 3D volume grids, or i = (i1) for 2D grids or 3D surface grids.

Algorithm 1.1 Hyperbolic grid generator:
generate()
Purpose : Generate a volume grid in 2D or 3D or a surface grid in 3D
{

x0
i := C(ri) : evaluate the starting surface (starting curve if nd ≡ 2)

if this is a surface-grid
projectInitialCurveOntoReferenceSurface(x0,ni,xt; R)

end

hyperbolic marching steps
for n = 0, 1, ..., N

getNormalAndSurfaceArea(xn,n, ∆a, ∆a,xr,xs)
getDistanceToStep(di) : get marching distance
getCurvatureDependentSpeed(di) : adjust marching distance for curvature
if n ≡ 0 and this is not a surface grid

xti := di (∆ai/∆ai) ni : linearize about this value of xt

end
form the right-hand-side:
ri := di (∆ai/∆ai) ni + εe∆+r∆−rx

n
i + εe∆+s∆−sx

n
i

A := A(xr,xs,xt) : linearized coefficient matrix for implicit time stepping
B := B(xr,xs,xt)
form implicit time stepping matrices:
M1 = I + A∆0r − εi∆+r∆−r

M2 = I + B∆0s − εi∆+s∆−s : M2 = I for nd ≡ 2

v := M−1
2

M−1
1

r : solve for the correction
xn+1

i := xn
i + vi

Next apply BC’s and optionally adjust for equidistribution.
For surface grids project xn+1 onto the reference surface:
applyBoundaryConditions(xn+1)

xti := xn+1

i − xn
i : linearize about this value of xt

end
}

1 HYPERBOLICMAPPING 8

Algorithm 1.2 Project the initial curve onto the reference surface and determine the initial normal
projectInitialCurveOntoReferenceSurface(x0,ni,xt; R)
{

: project initial curve onto the reference surface, compute normal
project(x0,ni; R)
: In case the initial curve lies on a edge in the reference surface where
: the normal is ill-defined, take a small initial step and then recompute the normal.

getNormalAndSurfaceArea(x0,n, ∆a, ∆a)
getDistanceToStep(di) : get marching distance
δ = .1 : take this fraction of a step
x1

i := x0
i + δ di (∆ai/∆ai) n0

i : take a small step
applyBoundaryConditions(x1,n) : this will also project onto the reference surface
xti := (x1

i − x0
i)/δ : linearize about this value of xt

}

1 HYPERBOLICMAPPING 9

Algorithm 1.3 Determine the normal and surface area
getNormalAndSurfaceArea(xn,n, ∆a, ∆a,xr,xs)
xn : position of the front
∆ai : (output) vertex centred area element
∆ai : (output) vertex centred averaged area element
xr : (output)
xs : (input/output) : for a surface grid xs defined on input as the normal to the surface.
{

n̂i+ 1

2

:= (xi+1 − xi)× (xj+1 − xj) : unnormalized face centred normal

ni+ 1

2

:= n̂i+ 1

2

/‖n̂i+ 1

2

‖ : face centred normal

n̂i := 1

4
(ni1−

1

2
,i2−

1

2

+ ni1+
1

2
,i2−

1

2

+ ni1−
1

2
,i2+

1

2

+ ni1+
1

2
,i2+

1

2

)

ni := n̂i/‖n̂i‖ : vertex centred normal
∆ai+ 1

2

:= ‖n̂i+ 1

2

‖ : cell centred area element

vertex centred area element:
∆aij := 1

4
(∆ai− 1

2
,i2−

1

2

+ ∆ai+ 1

2
,i2−

1

2

+ ∆ai− 1

2
,i2+

1

2

+ ∆ai+ 1

2
,i2+

1

2

)

apply special boundary conditions to normals
if trailing edge boundary condition

set normal to the trailing edge direction
elsif boundary matches to an adjacent surface

project the normal at the boundary to be tangent to the boundary condition surface
nB

i : normal to the boundary condition surface
ni := ni − (ni · n

B
i)nB

i : for boundary points
ni := ni/‖ni‖

elsif boundaryCondition=fixXfloatYZ or boundaryCondition=fixYfloatXZ etc.
adjust normal to be consistent with the boundary condition

end

blend nearby normals with the boundary normal
for m = 1, 2, . . . , numberOfLinesToBlend

ω = m/(numberOfLinesToBlend + 1)
ni+m = ωni+m + (1− ω)ni

ni+m = ni+m/‖ni+m‖
end

Compute smoothed area elements:
ω := .1625 : under-relaxation parameter
∆ai := ∆ai

for m = 1, 2, . . . , numberOfVolumeSmoothingIterations
∆ai := (1− ω)∆ai + ω/4(∆ai1+1 + ∆ai1−1 + ∆ai2+1 + ∆ai2−1)

end
xri := 1

2
(xi1+1 − xi1−1)

if nd ≡ 2
xsi := 1

2
(xi2+1 − xi2−1)

end
}

1 HYPERBOLICMAPPING 10

Algorithm 1.4 applyBoundaryConditions(xn,n)
Purpose : Apply boundary conditions to the current front. Optionally equidsitribute lines.
For surface grids, project the front onto the reference surface
ig : Denotes the index for ghost points
ib : Denotes the index for boundary points
{

if boundaryCondition == freeFloating
xig = 2xib − xib+1 : extrapolate ghost line

elsif boundaryCondition == outwardSplay
elsif boundaryCondition == fixXfloatYZ
elsif boundaryCondition == periodic
elsif boundaryCondition == matchToMapping

Project the boundary points onto the boundary mapping
B := mapping defining the boundary that we should match to
B.project(xib)

end

equidistributeGridLines(xn+1)

if this is a surface-grid
project(x0,ni; R)

end

apply periodic boundary conditions
}

Algorithm 1.5 getDistanceToStep(d)
Purpose : Return the current suggested distance to step
n : current step number
N : number of lines to march
D : distance to march
α : geometric stretching factor
{

if constant spacing
d = D/N

elsif geometric spacing
d = Dαn α−1

αN+1
−1

end
}

2 STEGER-CHAN HYPERBOLIC MARCHING 11

Algorithm 1.6 equidistributeGridLines(xn)
Purpose : Adjust points based on the arclength and curvature
xn : current grid point positions
c : A curve that interpolates the points xn

ωE : equidistribution weight, 0 ≤ ωE ≤ 1
αA : equidistribution arclength weight
αC : equidistribution curvature weight
{

if nd ≡ 2 : only used for domain dimension equal to 2
: compute a weight function based on arclength and curvature
dsi1+

1

2

:= ‖xi1+1 − xi1‖ : chord length

dssi1 := ‖xi1+1 − 2xi1 + xi1−1‖
wi1+

1

2

:= αAdsi1+
1

2

/‖ds‖∞ + αCdssi1+
1

2

/‖dss‖∞

equidistribute the weight function: determine positions rE
i ∈ [0, 1] such that:

∫ rE

i+1

rE

i

wdr = 1

N

∫
1

0
wdr

xE := c(rE) : re-evaluate the curve at the new positions
: weighted average of current positions and equidistributed positions
xn := (1− ωE)xn + ωExE

end
}

2 Steger-Chan Hyperbolic Marching

The approach discussed here follows Enhancements of a Three-Dimensional Hyperbolic Grid Generation Scheme by
Chan and Steger[2] and A Hyperbolic Surface Grid Generation Scheme and Its Applications by Chan and Buning[1].

Notation: Unit square coodinates (r, s, t) with marching direction along t.
Given a surface x(r, s, t = 0) we wish to generate a volume grid, x(r, s, t), that extends in a direction that is

nearly normal to the surface. To do this we choose xt to satisfy

xr · xt = 0 (4)

xs · xt = 0 (5)

xr × xs · xt = ∆V (r, s, t) (6)

where we have added the additional condition specifying the local volume of the cell.
To avoid a small time step in advancing the front we linearize and use an implicit time stepping method. We

can linearize about the state x0 (which we will later take to be the current time step). It is easier if we linearize the
equations in their original form of equation 6,

x0
t · xr + x0

r · xt = 0

x0
t · xs + x0

s · xt = 0

(x0
s × x0

t) · xr + (x0
t × x0

r) · xs + (x0
r × x0

s) · xt = ∆V (r, s, t) + 2∆V 0

or in matrix form
A0xr + B0xs + C0xt = f

or

(x0
t)

T

0
(x0

s × x0
t)

T

xr +

0
(x0

t)
T

(x0
t × x0

r)
T

xs +

(x0
r)

T

(x0
s)

T

(x0
r × x0

s)
T

xt =

0
0

V (r, s, t) + 2∆V 0

2 STEGER-CHAN HYPERBOLIC MARCHING 12

or
xt = −C−1

0
A0xr − C−1

0
B0xs + C−1

0
f

Writing this in incremental form

A0(xr − x0
r) + B0(xs − x0

s) + C0xt = g =

0
0

V (r, s, t)

If δx = xn+1 − xn then using the approximation xt ≈ xn+1 − xn (∆t = 1)

δx = −C−1
0

A0 δxr − C−1
0

B0 δxs + C−1
0

g

Discretizing with backward Euler

[I + C−1
0

A0∆0r + C−1
0

B0∆0s] δx = C−1
0

g

approximate factorization
[I + C−1

0
A0∆0r][I + C−1

0
B0∆0s] δx = C−1

0
g

Smoothing is added to this equation

[I + C−1
0

A0∆0r − εi∆+r∆−r][I + C−1
0

B0∆0s − εi∆+s∆−s] δx = C−1
0

g

+ εe∆+r∆−rx
n + εe∆+s∆−sx

n

+ Drx
n + Dsx

n

Note that the smoothing terms have components in the normal and tangential directions. The smoothing will increase
the step size in concave regions n · (xrr + xss) > 0 and decrease the step size in convex regions.

The cell volume can be computed to be the local area of the element times a user specified step length,

∆V = ∆L(r, s, t)∆A(r, s, t)

where the step length may be chosen to stretch the grids lines in any desired way. The area ∆A(r, s, t) is usually
smoothed using a few Jacobi iterations.

The variable dissipation coefficients are defined by

Dr = εer(r, s, t)∆+r∆−r

εer(r, s, t) = εeRrNr

Nr = ‖xt‖/‖xr‖

Rr = Knd
r
i a

r
i

Scaling function, Kn,

Kn =

{√
(n− 1)/(nmax − 1) if 2 ≤ n ≤ ntrans√
(ntrans − 1)/(nmax − 1) if ntrans + 1 ≤ n ≤ nmax

Grid point distribution sensor,

d
r
i = max((dr

i)
2/Kn

, 0.1)

dr
i =
‖∆+rx

n−1‖+ ‖∆−rx
n−1‖

‖∆+rxn‖+ ‖∆−rxn‖

3 THE OSHER-SETHIAN LEVEL SET (HAMILTON-JACOBI) MARCHING EQUATIONS 13

ntrans = max((3/4)nmax, minimum n where max
i

dr
i (n)−max

i
dr
i (n−1) < 0 or max

i
ds
i (n)−max

i
ds
i (n−1) < 0)

Grid angle distribution sensor

ar
i =

{
(1− cos2 αi)

−1 if 0 ≤ αi ≤ π/2

1 if π/2 < αi ≤ π

cos αi = n̂i · t
r
+ = n̂i · t

r
−

angle between normal and tangent

n = (tr
+ − tr

−
)× (ts

+ − ts
−
)

n̂ =
n

‖n‖
normal to surface

tr
+ =

∆+rx

‖∆+rx‖
unit tangent to the right of node i

tr
−

=
∆−rx

‖∆−rx‖
unit tangent to the left of node i

Note that

C0 =

(x0
r)

T

(x0
s)

T

NT
0

N0 = x0
r × x0

s = ‖x0
r × x0

s‖n0

det(C0) = x0
r × x0

s ·N0 = N0 ·N0 = ‖N0‖
2

and C−1
0

is given explicitly by

C−1
0

=
[
(xs ×N0)/‖N0‖

2 (−xr ×N0)/‖N0‖
2 N0/‖N0‖

2
]

In particular

C−1
0

g = V (r, s, t)
x0

r × x0
s

‖x0
r × x0

s‖
2

3 The Osher-Sethian Level Set (Hamilton-Jacobi) Marching Equations

Reference Level Set Methods by J. Sethian[6].
Another way to generate a hyperbolic grid, suggested by Sethian as an application of level-set methods is to

solve the equations

xt = (1− εκ)n(x) = V (x)n

κ = curvature

If ε > 0 then we are guaranteed that grid lines will not locally cross. Here the curvature κ causes the grid to move
faster where the curvature is negative and slower where it is positive.

For grid generation we do not want to march backwards so we must not let the speed function V become negative.
Sethian also adds smoothing in the tangential direction.

The curvature of a curve x(r) is k = xss where s is the arclength or in terms of a general parameterization:

k =
xr × xrr

‖xr‖3
= xss

The curvature has dimensions of one over a length.

4 DISTRIBUTING POINTS BY EQUIDISTRIBUTION OF A WEIGHT FUNCTION 14

I prefer to use a non-dimensional form for the curvature

kr(x) =
n · xrr

‖xr‖

with the speed function
V (x) = max(Vmin, 1 + ε max(kr, ks))

4 Distributing points by equidistribution of a weight function

For 2D grids or 3D surfaces (i.e. domainDimension==2) the grid lines in the tangential direction (i.e. not the
marching direction) can be distributed to place more points where the curvature or arclength is large. This option
can be combined, in a weighted fashion, with the other marching methods. Here is how this is done:

1. Take a step with the hyperbolic generator to give positions x.

2. Equidistribute the points x using a weighted combination of arclength and curvature,

xE = Equidistribute(x)

This equidistribution is performed by the ReparameterizationTransform, described elsewhere.

3. Choose the new positions to be a weighted average of the original positions and the equidistributed points

xn+1 = (1− α)x + αxE

α = equidistributionWeight

Notes:

• weighting by arclength is quite useful in many situations. It can be used to build a nice surface grid.

• weighting by curvature doesn’t work very well; this needs some work to make the correct defintion of the
curvature.

5 Boundary conditions

The enum BoundaryCondition defines the available boundary conditions,

freeFloating boundary values obtained by extrapolation. u−1 = 2u0 − u1.

outwardSplay This boundary condition causes the boundary of the grid to splay outwards or inwards in proportion
to the distance marched. Choose a value of

splayFactor=0. : no splay

splayFactor=.1 : small amount or splay.

splayFactor=1. : a large splay (generates a nearly circular boundary ??).

splayFactor=-.2 : negative for inward splay (doesn’t woork too well)

The splay is computed as

d = ‖xn
0 − xn−1

0
‖ (marching distance)

v = x0 − x1 (vector along ouwtard tangent)

x−1 = 2x0 − x1 + λd
v

‖v‖

x0 = .5x0 + .25(x−1 + x1)

λ = splayFactor

5 BOUNDARY CONDITIONS 15

fixXfloatYZ : the x values of the boundary points are kept constant.

fixYfloatXZ : the y values of the boundary points are kept constant.

fixZfloatXY : the z values of the boundary points are kept constant.

floatXfixYZ : the y, z values of the boundary points are kept constant.

floatYfixXZ : the x, z values of the boundary points are kept constant.

floatZfixXY : the x, y values of the boundary points are kept constant.

floatCollapsed ??

periodic

xSymmetryPlane

ySymmetryPlane

zSymmetryPlane

singularAxis

matchToMapping : project the boundary values to lie on a given Mapping (or CompositeSurface). The projection
is done so that the grid lines hitting the boundary are nearly orthogonal. This projection is defined by taking
the predicted positions xi and changing the boundary value x0 and the ghost value by

x0 ← P(θx1 + (1− θ)x0) (project onto the BC mapping)

x−1 ← 2x0 − x1

x−1 ← x−1 + (n0 · (x1 − x−1))n

With θ = 1 the boundary value would be the projection of x1 onto the boundary.

matchToPlane : like matchToMapping except that you will be prompted to define an arbitrary plane to use as the
mapping to match to.

5.1 Boundaries, Ghost Points and the BoundaryOffset

The HyperbolicMapping adds an extra line of points outside the grid; these are called ghost points. Ghost
points are used to make it easier to apply boundary conditions and will likely be used when the grid is used in a PDE
solver.

When a grid is generated with the hyperbolic grid generator one has a choice of which line to use as the ghost line.
Let’s say we are building a grid starting from a curve and that we put N + 1 points on the curve, xi, i = 0, . . . , N .
Normally the points i = 0 and i = N will be the boundary points and the points i = −1 and i = N + 1 will be the
ghost points. The boundaryOffset(side,axis) array can be used to change the position of the boundary.
By seting boundaryOffset(0,0)=1 then the point i = 1 will become the boundary point and the point i = 0
will be the ghost point.

It may be important to choose a boundaryOffset(0,0)=1 when growing a surface grid since one may
want to be able to precisely place the last grid line (next to a crease in the surface, for example). (Appears in the
asmo example).

The last line generated by the marching algorithm is always treated as a ghost point, since we do not want
to create an extra line by extrapolation say. Thus boundaryOffset(1,domainDimension)≥ 1 where do-
mainDimension equals 2 for a a grid in two dimensions or a surface grid in three dimensions, and domainDimension
equals 3 for a 3d volume grid.

6 CREATING A SURFACE GRID ON ANOTHER MAPPING OR COMPOSITESURFACE 16

5.2 Normal Blending

When a boundary condition is specified so that the grid must match to some specified Mapping at the boundary then
the normals near the boundary are blended with the direction taken by the boundary. This is necessary when the
direction of the boundary is not normal to the starting surface.

The blending is done with a simple linear function for points

ωi =
i− b

N − b

ni = ωini + (1− ωi)nb i = 0, 1, . . . , N

The number of points to be blended can be specified.

5.3 Projection of boundary points on surfaces

For surface grids we project all ghost point values onto the reference surface. This always includes points on the
ghost lines in the non-marching direction but also the ghost lines in the marching direction if the boundary condition
in that direction is set to 0 (i.e. interpolation). In the latter case the ghost points are obtained first by extrapolation
and then these extrapolated points are projected.

To prevent the projection of boundary use the project ghost points menu option to turn off the projection of
ghost points on specified sides.

5.4 Heuristic Comments on Hyperbolic Parameters

There are many parameters to the hyperbolic grid generator. Here are some heuristics that you can use to help you
choose the right values.

uniform dissipation coefficient : This term wants to make the front flat. This is the coefficient of the smoothing
term ∆ru. In concave corners it will cause the front to move faster since this is what happens when the front
in straightened out. At convex corners the front will move slower and could move in the wrong direction if it
is flattened out too much.

volume smoothing iterations : This term wants to make the grid spacing along the front become uniform. It will
tend to make the outer surface become a spherical shape. As the number of these smoothing iterations is
increased the speed of the front will become inversely proportional to the cell area. Small cells will move
faster than large cells. This term will never cause the front to move backward.

5.5 Hints to making a grid

If you are having trouble making a grid

take a few small steps : first try to make a grid very close to the starting surface.

increase the number of steps : for a fixed marching distance. This will allow the grid more time to deal with
difficult situations. After building a grid will lots of points you can change the resolution at the very end by
using the ‘lines’ option. This will cause the fine resolution grid to be interpolated on a coarser grid using the
interpolation defined in the DataPointMapping.

6 Creating a surface grid on another Mapping or CompositeSurface

A surface grid can be grown on any Mapping defining a surface or on a CompositeSurface which consists of a set
up sub-surfaces.

To grow a new hyperbolic surface grid on another surface:

7 EXAMPLES 17

1. Define an initial curve to start from:

User defined : before entering the HyperbolicMapping menu you may define an initial curve using any
available Mapping.

curve from edges : Create an initial curve as the union of edges from the reference surface. You can interac-
tively choose edges of surfaces or sub-surfaces.

curve from a coordinate line : choose a coordinate line from the reference surface.

project a line : define a line segement in 3D which is projected onto the reference surface.

project a spline : define a spline in 3D which is projected onto the reference surface.

2. Create the hyperbolic surface patch by growing the grid from the initial curve in either direction or in both
directions.

7 Examples

Parameters appearing in the figure titles

vs : number of volume smooths

eps : coefficient of the dissipation term

imp : coefficient of the implicit time stepping. imp = 1. is fully implicit, imp = 0. is explicit.

cs : curvature speed coefficient.

uw : coefficient of the upwind method.

eq : coefficient of the equidistribution.

7 EXAMPLES 18

An overlapping grid (bottom) generated on a portion of the CAD surface (top). Most of the component grids that
make up the overlapping grid were generated with the hyperbolic grid generator.

7 EXAMPLES 19

7.1 Bump

These figures show a hypebolic grid generated in both directions from a smooth spline. The effect of changing
various parameters is demonstrated. See the command file Overture/sampleMappings/hypeBump.cmd

7 EXAMPLES 20

7.2 Flat Plate

A spline is built to define a ’flat plate’ with rounded edges. The shape preserving option is used with the
spline which allows only a few knots to define the spline. A hypebolic grid is grown starting from the
spline. The figures show the resulting grids as various parameters are changed. See the command file Over-
ture/sampleMappings/hypeLine.cmd

7 EXAMPLES 21

7.3 Mast for a sail

This example shows the use of the ‘match to a mapping’ boundary condition. In this case the boundary condition for
the hyperbolic marching is that the boundary points should lie on some other specified Mapping. See the command
file Overture/sampleMappings/mastSail2d.cmd

Mapping defining a mast
A hyperbolic grid is marched starting from the mast

and matching to the sail

Hyperbolic grids created for a mast attached to a sail

7 EXAMPLES 22

7.4 Airfoil grids

The AirfoilMapping can be used to generate various types of airfoil shapes. These shapes can be used as
starting curves for the hypebolic grid generator. Some care must be taken at the trailing edge since the curvature is
so large. The boundary condition ‘trailing edge’ is specified so the grid generator can choose a good marching
direction at the trailing edge.

See the command file Overture/sampleMappings/hypeNaca.cmd

NACA0012, geometric stretching
NACA0012, geometric stretching, blowup of the

trailing edge

NACA1012, geometric stretching
NACA1012, geometric stretching, blowup of the

trailing edge

7 EXAMPLES 23

7.5 Surface grid generation on a CompositeSurface for a soup can

In this example we first build a CompositeSurface for a soup can consisting of two subsurfaces. A surface grid
is then generated around the edge. A volume grid is grown outward from the surface grid. See the command file
Overture/sampleMappings/hypeCan.cmd

Reference surface is a CompositeSurface Surface grid grown in both directions from the corner.

Volume grid grown outward from the surface grid.

7 EXAMPLES 24

7.6 Surface and Volume Grid Generation on a CAD model for an Automobile.

Figure (2) show an overlapping grid for the ASMO prototype automobile. The geometry of the asmo is defined by a
CAD model and saved in an IGES file.

Creating an overlapping grid for this geometry requires some experience in using the various tools - rap for
CAD fixup, mbuilder for building mappings and hyperbolic grids and ogen, the overlapping grid generator.

Here are the steps taken to build the grid for the asmo. The steps will use the command files as-
moNoWheels.cmd, asmoBody.cmd, asmoFrontWheel.cmd, asmoBackWheel.cmd and asmo.cmd
found in the Overture/sampleGrids directory. They will also use the rap, mbuilder and ogen programs
found in the Overture/bin directory. The IGES file defining the asmo CAD geometry is found in Overture/-
sampleMappings/asmo.igs.
Step 1. CAD cleanup with rap: The rap program is used to build a version of the asmo without any wheels by
running “rap asmoNoWheels.cmd”. This program will pause at various stages so you can see what it does. It will
create the file asmoNoWheels.hdf. The CAD model has duplicate surfaces which are deleted. After deleting the
wheels the holes in the body are filled in by deleting trimming curves. After cleanup the connectivity is determined
and a global triangulation is built. Refer to publications[4, 5] for further details of the CAD fixup and connectivity
algorithms. These are available from the Overture web page, under publications.
Step 2. Grids for the body: Running “mbuilder asmoBody.cmd” will generate grids around the body of the asmo.
The file asmoNoWheels.hdf built in step 1. will be read in. The file asmoBody.hdf will be created. The
mbuilder program will use the MappingBuilder class to coordinate the construction of grids on the CAD surface.
Body fitted grids are built by choosing a starting curve on the surface, growing a surface grid from this start curve
and then generating a volume grid from the surface grid. The aim was to build a few number of high quality grids.
We also build a large cartesian box to place the car in.
Step 3. Grids for the wheels: Running “mbuilder asmoFrontWheel.cmd” and “mbuilder asmoBackWheel.cmd”
will generate grids for the front wheel and back wheel and create the files asmoFrontWheel.hdf and as-
moBackWheel.hdf. These command files will directly read the asmo IGES file asmo.igs and select a subset
of the surfaces to work on since it is faster to work with a smaller geometry. The trimmed surfaces near the rear
wheel do not match very well and the surface has to be repaired.
Step 4. Overlapping grid: Running “ogen asmo.cmd” will build the overlapping grid for the asmo. It will read the
component grids generated by the previous steps. When the asmo grid was made for the first time, the wheels were
left off in order to simplify the grid generation. The wheels were then added, one at a time. This is in general a good
approach to use: slowly build up the grid for a complicated geometry starting from a simplified version.

7 EXAMPLES 25

Figure 2: Top left: CAD geometry for a car consisting of a patched surface. Top right: after the CAD representation
is repaired a global triangulation is built. Bottom left: overlapping grid for the front. Bottom right: overlapping grid
for the geometry.

7 EXAMPLES 26

7.7 Grid Generation for a Truck.

In this case study we illustrate the use of the hyperbolic grid generator and mappingBuilder to construct grids on a
truck. This ‘truck’ is actually a wind-tunnel model.

Figure 3: Overlapping grid for the cab of a truck.

7.7.1 Front

Figure (4) shows the surface grid for the front of the truck. The starting curve for the grid was generating by cutting
the CAD model with a plane. The surface grid was grown, stretched and smoothed.

Remarks:

• The equidistribution weight was turned on to generate the surface grid. This allowed the grid to march more
cleanly over the surface.

• The CAD surface grid bends sharply in a small region on top of the bumper. The grid was smoothed in this
region without projecting onto the CAD surface so as to smooth this indentation out a little bit.

7 EXAMPLES 27

Cut plane is used to generate starting curve.

Stretching is added after marching.

Bumper indentation smoothed.

Figure 4: Grids for the front of the cab. Top left: starting curve is generated by intersecting a plane with the surface.
Top right: surface grid is grown. Bottom: surface grid is stretched and smoothed. The identation over the bumper is
smoothed slightly by locally smoothing without projecting onto the CAD surface.

7 EXAMPLES 28

7.7.2 Wheel

Each wheel is covered with two grids as shown in figure (5). The tricky part here is to have a grid line follow all the
corners.

Remarks:

• The surface grid for the wheel-body join was generated by matching to ‘interior matching curves’. This causes
grid lines to follow the edges of the wheel.

Starting curve.

Grid is grown matching to interior curves. Stretching added.

Volume grid grown and matched to body surface.

Starting curve.

Figure 5: Wheel Grids. Top left: Surface grid is generated by matching to ‘interior matching curves’. Top right:
surface grid is stretched and smoothed. Bottom left: volume grid for wheel-body-join is grown by matching to body
surface. Bottom right: Surface grid for wheel.

7 EXAMPLES 29

7.7.3 Cab tender

The grid for the cab tender was built by projecting a transfinite interpolation (TFI) mapping onto the CAD surface.
This option is available from the MappingBuilder. This gave a nicer grid than the hyperbolic grid generator. Two
curves were defined for the TFI mapping by intersecting the CAD surface with planes.

Plane cuts surface to create end curve for TFI.

TFI built from two end curves.

TFI before projecting onto the surface.

Projected and stretched TFI.

Figure 6: Cab Tender Grids.

8 CLASS MEMBER FUNCTIONS 30

8 Class member functions

8.1 Constructor

HyperbolicMapping()

Purpose: Create a mapping that can be used to generate a hyperbolic volume grid.

8.2 Constructor

HyperbolicMapping(Mapping & surface)

Purpose: Create a mapping that can be used to generate a hyperbolic volume grid.

surface (input): Generate the grid starting from this curve (2D) or surface (3D)

8.3 Constructor

HyperbolicMapping(Mapping & surface , Mapping & startingCurve)

Purpose: Create a hyperbolic surface grid.

surface (input): Generate the grid on this surface in 3D.

startingCurve :

8.4 isDefined

bool
isDefined() const

Description: return true if the Mapping has been defined.

8.5 printStatistics

int
printStatistics(FILE *file =stdout)

Description: Print timing statistics.

8.6 setBoundaryConditionMapping

//==
int
setBoundaryConditionMapping(const int & side,

const int & axis,
Mapping & map,
const int & mapSide =-1,
const int & mapAxis =-1)

Purpose: Supply a mapping to match a boundary condition to.

side,axis (input) : match to this boundary of the hyperbolic grid.

8 CLASS MEMBER FUNCTIONS 31

map (input): Match the boundary values of the grid to lie on this surface or match the boundary values to lie on the
face of this Mapping defined by (mapSide,mapAxis).

mapSide,mapAxis (input) : use this face of the Mapping ‘map’. Supply these values if the hyperbolic grid is to be
matched to a face of ’map’, rather than map itself.

8.7 setSurface

int
setSurface(Mapping & surface , bool isSurfaceGrid =true)

Purpose: Supply the curve/surface from which the grid will be generated.

surface (input): Generate the grid starting from this curve (2D) or surface (3D)

isSurfaceGrid (input) : set to true if a surface grid should be built, set to false if a volume grid should be created.

8.8 setIsSurfaceGrid

void
setIsSurfaceGrid(bool trueOrFalse)

Purpose: Indicate whether a surface grid or volume grid should be built.

trueOrFalse (input) : set to true if a surface grid should be built, set to false if a volume grid should be created.

8.9 setStartingCurve

int
setStartingCurve(Mapping & startingCurve)

Purpose: Supply a starting curve for a surface grid.

startingCurve (input):

8.10 saveReferenceSurfaceWhenPut

int
saveReferenceSurfaceWhenPut(bool trueOrFalse = TRUE)

Purpose: Save the reference surface and starting curve when ’put’ is called.

8.11 setup

int
setup()

Access: protected.

Purpose: Define properties of this mapping

8 CLASS MEMBER FUNCTIONS 32

8.12 setParameters

int
setParameters(const HyperbolicParameter & par,
const IntegerArray & ipar = Overture::nullIntArray(),
const RealArray & rpar = Overture::nullRealDistributedArray(),

const Direction & direction = bothDirections)

Purpose: Define a parameter for the hyperbolic grid generator.

par (input): The possible value come from the enum HyperbolicParameter:

growInBothDirections : grow the grid in both directions.

growInTheReverseDirection : grow the grid in the reverse direction (this will result in a left handed coordi-
nate system.

numberOfRegionsInTheNormalDirection

stretchingInTheNormalDirection

linesInTheNormalDirection : specify the number of lines to use in the normal direction.

distanceToMarch : ipar(0) = region number, rpar(0) = distance

spacing : ipar(0) = region number, rpar(0) = dz0, rpar(1)=dz1

boundaryConditions

dissipation

volumeParameters

barthImplicitness

axisParameters

THEtargetGridSpacing : rpar(0) gives the target grid spacing when choosing the number of grid points in
the tangential direction (i.e. for the start curve and for marching on surfaces). A negative value means
use a best guess.

THEinitialGridSpacing : rpar(0) gives the target grid spacing when choosing the number of grid points for
marching volume grids (e.g. the spacing of the first grid line for volume grids). A negative value means
use a best guess.

THEspacingType : a value from SpacingType enum

THEspacingOption : a value from SpacinOptionEnum

value (input):

direction (input) : The hyperbolic surface can be grown in two possible directions (or both directions). direc-
tion indicates which direction the new parameter values should apply to: (enum Direction)

direction=bothDirections : parameters apply to both the forward and reverse directions.

direction=forwardDirection : parameters apply to the forward direction.

direction=reverseDirection : parameters apply to the reverse direction.

8.13 setPlotOption

int
setPlotOption(PlotOptionEnum option, int value)

Description: set a plot option.

choosePlotBoundsFromGlobalBounds: if true use global bounds for plotting, allows calling program to set the
view

8 CLASS MEMBER FUNCTIONS 33

8.14 smooth

int
smooth(GenericGraphicsInterface & gi, GraphicsParameters & parameters)

Access: protected

Description: Smooth the hyperbolic grid using the elliptic grid generator.

8.15 inspectInitialSurface

int
inspectInitialSurface(realArray & xSurface, realArray & normal)

Purpose: Inspect the initial surface for corners etc.

8.16 generate

int
generateOld()

Purpose: Generate the hyperbolic grid. *** OLD VERSION ***

Return value: 0 on success, 1=hypgen not available

REFERENCES 34

References

[1] W. CHAN AND P. BUNING, A hyperbolic surface grid generation scheme and its applications, paper 94-2208,
AIAA, 1994.

[2] W. M. CHAN AND J. L. STEGER, Enhancements of a three-dimensional hyperbolic grid generation scheme,
Applied Mathematics and Computation, 51 (1992), pp. 181–205.

[3] W. HENSHAW, Mappings for Overture, a description of the Mapping class and documentation for many useful
Mappings, Research Report UCRL-MA-132239, Lawrence Livermore National Laboratory, 1998.

[4] W. D. HENSHAW, An algorithm for projecting points onto a patched CAD model, Research Report UCRL-JC-
144016, Lawrence Livermore National Laboratory, 2001. To appear in Engineering with Computers.

[5] N. A. PETERSSON AND K. K. CHAND, Detecting translation errors in CAD surfaces and preparing geometries
for mesh generation, in Proceeding of the 10th International Meshing Rountable, 2001.

[6] J. SETHIAN, Level Set Methods, Cambridge University Press, 1996.

Index

algorithm, 7

equidistribution, 14

35

